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Key Points:  13 

• Snowfall determination accuracy varies greatly among four remote sensing datasets 14 

ranging from 42% to 96%. 15 

• GPM dual frequency radar detects snowfall at about 1.5 km above the ground, 16 

instead of surface snowfall. 17 

• MERRA2 temperature close to the surface is noticeably colder than observed, 18 

leading to more rainfall pixels being classified as snowfall pixels. 19 

 20 
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 Abstract: The first key step to accurately measure global snowfall is to separate rainfall from 24 

snowfall correctly (i.e., precipitation phase discrimination). This study first evaluates the phase 25 

discrimination performance in four remote sensing datasets, including observations from ground 26 

radar, spaceborne radars, and spaceborne radiometer, relative to ground observations. Results 27 

show that the snowfall discrimination accuracy varies greatly among these datasets ranging from 28 

42% to 96%, dependent on whether and how the temperature information are considered. For 29 

example, over half of the snowfall from the GPM spaceborne radar is actually rainfall at the 30 

surface since it detects snowfall at ~ 1.5 km above the ground without considering the 31 

temperature information close to the surface.  Second, we evaluate the discrimination 32 

performance using the temperature information from four reanalysis datasets. It is found that 33 

MERRA2 temperature close to the surface is colder than the other three datasets, leading to more 34 

rainfall pixels being misclassified as snowfall pixels.  35 

 36 

Plain Language Summary: Satellite remote sensing provides the only means of measuring 37 

rainfall/snowfall on the global scale.  Misclassifying the precipitation phase (i.e., rainfall as 38 

snowfall, or vice versa) could lead to the estimated precipitation rate being one order of 39 

magnitude smaller or larger. Our results reveal that the snowfall discrimination accuracy varies 40 

greatly among four remote sensing datasets ranging from 42% to 96%. For example, over half of 41 

the snowfall from the state-of-the-art precipitation product based on the Global Precipitation 42 

Measurement radar is rainfall at the surface without considering the temperature information 43 

close to surface. Additionally, the temperature discrepancy among different reanalysis datasets 44 

also greatly affects precipitation phase discrimination. Our results show that MERRA2 45 

temperature close to the surface is colder than the other three major datasets, leading to more 46 
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rainfall pixels being misclassified as snowfall pixels. 47 

  48 
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1. Introduction 49 

Accurate global snowfall measurement is needed for many applications including water 50 

resources management (Gergel et al., 2017), water budget evaluation (Sheffield et al., 2009), and 51 

long-term climate change monitoring (OGorman, 2014). Satellite remote sensing provides the 52 

only means for the snowfall measurement on the global scale. The CloudSat Cloud Profiling 53 

Radar (CPR) observations (Stephens et al., 2002) have been used widely to investigate global 54 

snowfall features (Liu, 2008; Kulie and Bennartz, 2009; Kulie et al., 2016, Milani et al., 2018). 55 

Snowfall characteristics have also been characterized by the dual frequency precipitation radar 56 

(DPR) on board the Global Precipitation Measurement Mission (GPM) Core Observatory 57 

Satellite (Adhikari et al., 2018; Skofronick-Jackson et al., 2019), though the GPM DPR has a 58 

limited capability to measure light snowfall events with detection sensitivity at about 12 dBZ 59 

(Hamada and Takayabu, 2016; Panegrossi et al., 2017; Skofronick-Jackson et al., 2019). In 60 

addition, passive microwave radiometers are also commonly used for global snowfall estimation 61 

(Kongoli et al., 2003; You et al., 2015; Kummerow et al., 2015; Meng et al., 2017; Kidd et al., 62 

2016; Ebtehaj and Kummerow, 2017). Ground radar observations also provide valuable snowfall 63 

information on the regional and continental scale. For example, the Multi-Radar Multi-Sensor 64 

(MRMS) provides snowfall estimation over the continental United States at 2-minute and about 65 

1-km resolution (Kirstetter et al., 2012; Zhang et al., 2016).  66 

 67 

It remains extremely challenging to accurately measure falling snow from both ground and 68 

spaceborne radars (Chen et al., 2016; Skofronick-Jackson et al., 2019; Kulie et al., 2021), and 69 

microwave radiometers (Wang et al., 2013; Kummerow et al., 2015; You et al., 2017; Meng  et 70 

al., 2017; Milani et al., 2021).  A major obstacle is how to accurately determine the precipitation 71 



5  

phase (i.e., separating rainfall from snowfall). Precipitation phase misclassification (e.g., rainfall 72 

to snowfall, or vice versa) could lead to the estimated precipitation rate from spaceborne radar 73 

being one order of magnitude smaller or larger (Sims and Liu, 2015). On the other hand, there 74 

exists very limited information in the remote sensing measurements themselves for precipitation 75 

phase determination. Specifically, a bright-band in the radar profiles may indicate rainfall at the 76 

surface, while not all radar profiles have a bright-band. Furthermore, the uncontaminated 77 

spaceborne radar observations are about 1.5 km above the ground level, while the precipitation 78 

phase may change from 1.5 km to the surface. The brightness temperature (TB) observations 79 

from passive microwave radiometers do not directly indicate the precipitation phase at the 80 

surface. Very cold TB may be associated with hail events (Ferraro et al., 2015; Mroz et al., 81 

2017). However, it is difficult to distinguish snowfall from rainfall by using TB only.  82 

 83 

Researchers have long sought to exploit temperature-related parameters for precipitation phase 84 

discrimination. For example, early studies based on limited station observations using the surface 85 

air temperature revealed that the rainfall-snowfall transition threshold value is close to 2 °C 86 

(United States Army Corps of Engineers, 1956; Auer Jr, 1974). Later studies showed that other 87 

variables besides the surface temperature can also be used to constrain the rainfall-snowfall 88 

separation, including surface pressure (Dai, 2008; Sims and Liu, 2015), land surface elevation 89 

(Ding et al., 2014; You et al., 2016), relative humidity (Matsuo et al., 1981; Behrangi et al., 90 

2018; Jennings et al., 2018), and temperature lapse rate (Haynes et al., 2009; Sims and Liu, 91 

2015). The mean temperature (or thickness) from the surface to the low or mid-troposphere has 92 

also been widely used to determine the precipitation type (Wagner, 1957; Bourgouin, 2000). In 93 

addition, Jennings et al. (2018) pointed out that the snowfall-rainfall transition temperature varies 94 
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from -0.4 ºC to 2.4 °C across the Northern Hemisphere, further adding complexity and difficulty 95 

for accurate precipitation phase partitioning.  96 

 97 

The first objective of this study is to evaluate precipitation phase discrimination performance in 98 

four commonly used precipitation remote sensing datasets. They are the CloudSat CPR 99 

precipitation product (2C-PRECIP-COLUMN) (Haynes et al., 2009), GPM DPR precipitation 100 

product (2ADPR) (Hamada and Takayabu, 2016; Iguchi, 2020; Le et al., 2017), GPM 101 

Microwave Imager (GMI) precipitation product (2AGPROFGMI) (Kummerow et al., 2015), and 102 

the MRMS precipitation product in the Continental United States (CONUS) (Zhang et al., 2016). 103 

More details regarding the precipitation phase determination in these products will be provided 104 

in the following sections.  In addition, several phase segregation methods exist in the literatures, 105 

and temperature related parameters often are obtained from different reanalysis datasets. 106 

Therefore, the second objective is to assess the phase discrimination accuracy by using different 107 

methods and reanalysis datasets. 108 

 109 

2 Datasets and Methodology 110 

2.1 Datasets  111 

The reference (“truth”) dataset for this study is the precipitation phase code reports (i.e., rainfall 112 

or snowfall) from the NOAA National Centers for Environmental Information (NCEI)’s 113 

Integrated Surface Database (ISD), which consists of global hourly and synoptic observations 114 

from over 35,000 stations worldwide (Smith et al., 2011). This dataset has also been used to train 115 

precipitation phase discrimination schemes (Dai, 2008; Liu, 2008; Sims and Liu, 2015; You et 116 

al., 2016; Behrangi et al., 2018) and compute precipitation frequencies (Petty, 1995; Dai, 2001).  117 
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 118 

The precipitation phase information in the remote sensing datasets to be compared in this study 119 

is from CloudSat CPR precipitation product (2C-PRECIP-COLUMN, version 5) (Haynes et al., 120 

2009), GPM DPR precipitation product (2ADPR, version 6) (Hamada and Takayabu, 2016; Le et 121 

al., 2017; Iguchi, 2020), GPM Microwave Imager (GMI) precipitation product (2AGPROFGMI, 122 

version 5) (Kummerow et al., 2015), and the MRMS precipitation (operational version) (Zhang 123 

et al., 2016).  124 

 125 

Specifically, for CPR 2C-PRECIP-COLUMN, we obtain the “Precip_flag” variable, which 126 

groups the precipitation phase into one of three categories: rain, snow, and mixed. For DPR, we 127 

obtain the “phaseNearSurface” and “flagSurfaceSnowfall”. The first variable is determined by 128 

the temperature at the near surface level (∼1.5 km) and the bright-band information (Iguchi, 129 

2020). The second variable is computed from the difference between Ku-band PR (KuPR) and 130 

Ka-band PR (KaPR) at the clutter-free height (~1.5 km) (Le et al., 2017). For GPM Microwave 131 

Imager (GMI) retrieval from the Goddard Profiling Algorithm (GPROF), we obtain surface 132 

precipitation rate (“surfacePrecipitation”) and snowfall rate (“frozenPrecipitation”). For MRMS, 133 

we obtain the precipitation flag variable (“pcp_flag”).  134 

 135 

To collocate the remote sensing datasets with the surface reference data, we use the threshold 136 

values of 10 minutes and 10 km for CPR, DPR, and GMI observations. That is, when remote 137 

sensing observations and the surface reference data are less than 10 minutes apart in time and 138 

less than 10 km away in distance, they are considered as coincident observations. These two 139 

threshold values (10 minutes and 10 km) are selected by considering the trade-off between the 140 
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sample size (primarily for the CPR nadir-only observations) and the accuracy of coincident 141 

observations. It is worth mentioning that the spatial resolution for CPR, DPR, and GMI 142 

precipitation products are about 1.6 km, 5.2 km, and 14.3 km, respectively. The ancillary 143 

temperature information used in these products for precipitation phase determination is often 144 

much coarser than these spatial resolutions. For MRMS, we simply find the nearest time and the 145 

closest distance with the surface data due to its high spatial (about 1 km) and temporal (2 146 

minutes) resolutions. For the collocation period, we use the full CPR observation record from 147 

2006 to 2017. For DPR and GMI products, we use observations from March 2014 (launch of the 148 

GPM satellite) to December 2018. For MRMS, we only use the data in 2016 with large enough 149 

sample size (> 1 million collocated samples) since the ground radars used to generate the MRMS 150 

precipitation dataset often are on the same location with the ground gauges, from where the 151 

precipitation phase reports are obtained.  152 

 153 

As mentioned previously, the temperature information for the phase determination in remote 154 

sensing products is often obtained from model outputs. Our second objective is to evaluate the 155 

phase discrimination accuracy when the ancillary temperature information is obtained from 156 

different sources. To this end, this study compares four global reanalysis datasets, including the 157 

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) 158 

(Gelaro et al., 2017), the ECMWF Reanalysis 5th generation (ERA5) (Hersbach et al., 2020), the 159 

Japanese 55-year Reanalysis (JRA55) (Kobayashi et al., 2015), and the Global Forecast System 160 

(GFS) (Kanamitsu et al., 1991). The spatial resolutions are 0.5º×0.625º for MERRA-2, 161 

0.25◦×0.25◦ for ERA5, 1.25◦×1.25◦ for JRA55, and 0.5◦×0.5◦ for GFS, respectively. The temporal 162 

resolutions for the surface temperature, 2-m air temperature, and the surface pressure are hourly 163 
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for MERRA2 and ERA5, and 6-hourly for JRA55 and GFS, respectively. The temporal 164 

resolutions for the temperature profile and geopotential height profile are hourly for ERA5, 3-165 

hourly for MERRA2, and 6-hourly for JRA55 and GFS, respectively. For all these model 166 

datasets, we match the surface weather report data with the closest grid and linearly interpolate 167 

the temperature information in the temporal dimension.  168 

 169 

2.2 Evaluation metric 170 

 We assess the phase discrimination performance in the four remote sensing datasets using the 171 

snowfall or rainfall success percentage. We take the snowfall and the CPR as an example to 172 

show the definition of the success percentage. The snowfall success percentage is computed as 173 

the number of snowfall observations from CPR divided by the number of the snowfall 174 

observations from the reference. Similar computations are applied to rainfall success percentage 175 

and to other remote sensing datasets.  176 

 177 

We would like to emphasize that our analysis is not a detection performance evaluation. Instead, 178 

the snowfall or rainfall success percentage is computed when both the remote sensing 179 

instruments and the surface reference dataset detect precipitation. This requirement normalizes 180 

for any differences in detection capabilities. For example, it is known that CPR has a much better 181 

detection sensitivity compared with both DPR and ground radars in MRMS datasets (Wang et 182 

al., 2018; Skofronick-Jackson et al., 2019).  183 

 184 

 185 

3 Results 186 
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This section first uses a contingency table analysis to determine the snowfall success percentage 187 

from the four datasets.  This analysis also explains why the snowfall success percentages differ 188 

greatly across these datasets. Second, we analyze the snowfall (rainfall) success percentages 189 

from six different phase determination schemes using ancillary parameters from four reanalysis 190 

datasets.  191 

 192 

3.1 Snowfall success percentage 193 

 As mentioned previously, there are two methods used in the DPR product to determine the 194 

precipitation phase. The first method (hereafter referred to as DPR M1) separates the snowfall 195 

from rainfall using temperature information at about 1.5 km above the ground (clutter-free 196 

height), combined with bright-band information if it exists in the radar reflectivity profile. The 197 

second method uses the KuPR and KaPR radar reflectivity difference at about 1.5 km above the 198 

ground (hereafter referred to as DPR M2).  199 

 200 

Figure 1 shows the snowfall success percentage from CPR, DPR, GPROF, and MRMS. It is 201 

immediately clear that both DPR methods show rather poor performance with snowfall success 202 

percentages of less than 50%, which means that more than half of the snowfall indicated by DPR 203 

is rainfall or mixed precipiation at the surface, which is somewhat expected since both DPR 204 

methods diagnose the precipitation phase at ~1.5 km above the ground, instead of at the surface. 205 

The temperature can increase about 9 °C from 1.5 km to the ground assuming a 6 ºC temperature 206 

lapse rate. In contrast, CPR demonstrates a much larger snowfall success percentage of about 207 

96%. Over land, CPR uses a conservative classification scheme where pixels are classified as 208 

snow if the maximum temperature in the column is less than 0 ºC, rain if the maximum 209 
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temperature in the column is greater than 2 ºC, and an undetermined "mixed precipitation" in all 210 

other cases. This explains why CPR has a much better snowfall success percentage, compared 211 

with DPR. The more accurate temperature information from the ECMWF analysis dataset used 212 

in the CPR precipitation phase determination may also contribute to its better performance (more 213 

details in the next section).  214 

 215 

In the GPROF GMI retrievals, there are two precipitation rate variables (i.e., precipitation rate 216 

and snowfall rate). First, we select snowfall rates greater than 0 to compute the snowfall success 217 

percentage (hereafter referred to as GPROF M1). Second, we select pixels with a snowfall rate 218 

greater than 0 and the difference between snowfall rate and precipitation rate is less than 0.01 219 

mm/hr (hereafter referred to as GPROF M2). Figure 1 shows that GPROF M2 has a much higher 220 

snow success percentage of 96% than that from GPROF M1 of 81%. The much larger success 221 

percentage from GPROF M2 is directly determined by how GPROF calculates the snowfall 222 

rates. Specifically, GPROF produces the snowfall rates by multiplying the precipitation rates 223 

with the snowfall probability determined by the 2-m wet bulb temperature (Sims and Liu, 2015).  224 

In the GPROF M2, we intentionally make these two variables close (i.e., the difference between 225 

snowfall rate and precipitation rate less than 0.01 mm/hr). As expected, choosing different 226 

threshold values (e.g., 0.1 or 0.001 mm/hr) will affect the snowfall success percentage values. In 227 

fact, the snowfall success percentage is 99% (90%) with the difference being 0.001 mm/hr (0.1 228 

mm/hr).  It is worth mentioning that evaluating the snowfall success percentage from GPROF is 229 

actually equivalent to evaluating the snowfall probability computed from 2-m wet bulb 230 

temperature based on Sims and Liu (2015).  231 

 232 
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 233 

For MRMS, the snowfall success percentage is 84%, while the vast majority of the other 16% of 234 

data (i.e., surface indicates snowfall while MRMS judges them as rainfall) is misclassified as 235 

“cold stratiform” rainfall. Using independent precipitation type reports from the citizen-236 

scientists, Chen et al., (2018) also noticed that MRMS tends to misidentify snowfall as rainfall. 237 

The authors pointed out that the temperature threshold values or the uncertainties in the model-238 

output temperature information may be responsible for the misidentification. Further analysis 239 

shows that the temperature information used in MRMS agrees very well with ground 240 

observation. Therefore, we conclude that the most likely reason for the misclassification (i.e., 241 

snowfall as rainfall) in MRMS is caused by the “colder” threshold values.  Finally, it is worth 242 

mentioning that the rainfall success percentages from all four datasets are greater than 94% with 243 

no clear differences. 244 

 245 

3.2 Phase discrimination based on different methods and different reanalysis datasets 246 

In this section, we compute the snowfall and rainfall success percentages, using six phase 247 

discrimination methods and four global reanalysis datasets. The first 5 approaches are from Sims 248 

and Liu (2015), which uses 2-m air temperature (T2m), 2-m wet bulb temperature (Tw), 2-m wet 249 

bulb temperature (Tw) & surface temperature (Ts), 2-m wet bulb temperature (Tw) & 250 

temperature lapse rate (Γ), and 2-m wet bulb temperature (Tw) & temperature lapse rate (Γ) & 251 

surface temperature (Ts), respectively.  It worth mentioning that the GPROF precipitation 252 

product utilizes the second method (i.e., Tw) for the phase discrimination. These five methods, in 253 

order, are referred to as M1, M2, ..., M5. The sixth method (referred to as M6) is based on 254 

Haynes et al. (2009), which is the phase segregation method for CloudSat precipitation products.  255 
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As mentioned previously, CPR judged a pixel as the snowfall pixel over land when the 256 

maximum temperature in the temperature profile less than 0º C (i.e., all temperature values are 257 

less than 0º C in the profile). We do not include the MRMS phase discrimination method since 258 

its threshold values are based on the temperature information from a regional model output. 259 

Additionally, we only utilize the ground weather reports in 2016 since there are about 2.2 million 260 

precipitating reports in total.  261 

 262 

Table 1 shows the snowfall success percentage from these six different methods and four 263 

different datasets. The results show that using 2-m wet-bulb temperature (M2) generates slightly 264 

better phase discrimination performance than that using 2-m temperature (M1), regardless of the 265 

reanalysis datasets. This is because that the wet-bulb temperature is closer to the hydrometeors’ 266 

temperature than the temperature itself since it combines the temperature and moisture 267 

information (Sims and Liu, 2015). More importantly, we do not notice additional discriminant 268 

capability being added when including more variables (e.g., lapse rate and surface temperature), 269 

by comparing M2 with M3 to M5.  Further, the snowfall success percentage from M6 is slightly 270 

lower than those from M1 to M5, regardless of the reanalysis datasets. For example, the success 271 

percentage from M6 is 93% using ERA5 (Table 1, 7th row and 5th column), while it is 95% from 272 

M1 (Table 1, 2nd row and 5th column). The reason why M6 generates slightly lower success 273 

percentage is because M6 requires the maximum temperature in the profile being less than 0 ºC, 274 

which is colder than the temperature threshold values used from M1 to M5 (e. g., 2-m air 275 

temperature being 1.6 ºC in M1). Consequently, a small percentage of observed snowfall is 276 

misclassified as mixed precipitation.  277 

 278 
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Table 2 shows that the rainfall success percentage based on MERRA2 is smaller than those from 279 

other reanalysis datasets for M1 to M5, because MERRA2’s temperature profile from about 280 

200m to the surface is noticeably colder than those from the other three datasets, shown in Fig. 281 

2a. The colder temperature from MERRA2 is further corroborated from the 2-m air temperature 282 

plot in Fig. 2b, which demonstrates the 2-m air temperature difference between the reference and 283 

those from each reanalysis datasets. Clearly, 2-m air temperature from MERRA2 is about 1 °C 284 

colder than those from other datasets. Basically, the colder MERRA2 temperature misidentifies 285 

the rainfall pixels as the snowfall pixels. The colder surface temperature from MERRA2 is also 286 

reported by Draper et al., 2018.    287 

 288 

Rainfall success percentage from M6 is about 92% using all four model outputs (Table 2). This 289 

number (92%) is about 4% higher than those from M1 to M5 when using MERRA2, which is 290 

because M6 requires the maximum temperature (Tmax) in the temperature profile greater than 2 291 

°C. Even though MERRA2 is noticeably colder than observed, M6 achieves a slightly better 292 

success percentage by using a slightly higher temperature threshold value than those from M1 to 293 

M5 (e. g., 2-m air temperature being 1.6 ºC in M1).  In contrast, M6 generates a slightly lower 294 

success percentage comparing with M1 to M5 when using the other model outputs, which again 295 

can be attributed to the 2 °C threshold value used in M6, which aims to exclude purely snowing 296 

scenes while allowing a larger unknown “mixed” category. Basically, M6 classifies a small 297 

percentage of rainfall as “mixed precipitation”.  298 

 299 

4. Conclusions 300 

This study evaluated the precipitation phase discrimination performance in four widely used 301 
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remote-sensing precipitation datasets using global ground precipitation phase reports. It is found 302 

that more than half of the snowfall indicated by GPM DPR is actually rainfall on the ground 303 

because the phase determined by DPR is at about 1.5 km above the ground level. In other words, 304 

more than half of the snowfall from DPR at the 1.5 km above the ground level melts to rain 305 

drops at the surface level. In contrast, CloudSat CPR shows a much better snowfall classification 306 

primarily because it considers the temperature profile information. In addition, the snowfall rate 307 

in GPM GMI precipitation product is computed as the product of the snowfall probability and 308 

the precipitation rate. Therefore, the snowfall discrimination accuracy is determined by the 309 

snowfall probability accuracy calculated by Sims and Liu’s method from the 2-m wet bulb 310 

temperature (Sims and Liu, 2015).  Further, MRMS misclassifies some snowfall as cold 311 

stratiform rainfall. An analysis of four different reanalysis datasets shows that the MERRA2 312 

temperature profile is noticeably colder close to the surface than those from the other three 313 

global reanalysis datasets, which results in the rainfall being misclassified as snowfall. Finally, it 314 

is found that using the 2-m wet-bulb temperature is adequate for snowfall determination 315 

regardless of which reanalysis datasets is chosen.  316 

 317 

The comparison analysis reveals that different remote sensing datasets use very different 318 

approaches for precipitation phase determination, leading to significantly different accuracy 319 

performance. Understanding this feature is critically important for correctly using these datasets 320 

and future satellite precipitation dataset evaluations. This study also highlights the challenges 321 

and obstacles in precipitation phase discrimination, an issue that must be addressed to generate 322 

more accurate global snowfall climatology. 323 

 324 
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Table 1. Snowfall success percentage (%) from six methods (M1 to M6) and four reanalysis 479 

datasets (MERRA2, JRA55, ERA5, and GFS).  The first 5 approaches are from Sims and Liu 480 

(2015), which use 2-m air temperature (T2m), 2-m wet bulb temperature (Tw), 2-m wet bulb 481 

temperature (Tw) & surface temperature (Ts), 2-m wet bulb temperature (Tw) & temperature 482 

lapse rate (Γ), and 2-m wet bulb temperature (Tw) & temperature lapse rate (Γ) & surface 483 

temperature (Ts), respectively. The sixth approach is from Haynes et al. (2009), which requires 484 

the maximum temperature (Tmax) in the temperature profile being less than 0 °C. 485 

 486 

Method Variables MERRA2 JRA55 ERA5 GFS 

M1 T2m 94 93 95 95 

M2 Tw 97 95 96 96 

M3 Tw, Ts 97 94 96 95 

M4 Tw, Γ 97 95 96 96 

M5 Tw, Γ, Ts 97 95 96 96 

M6 Tmax 91 90 93 91 

487 
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    488 

Table 2. Rainfall success percentage (%) from six methods (M1 to M6) and four reanalysis 489 

datasets (MERRA2, JRA55, ERA5, and GFS).  The first 5 approaches are from Sims and Liu 490 

(2015), which use 2m air temperature (T2m), 2-m wet bulb temperature (Tw), 2-m wet bulb 491 

temperature (Tw) & surface temperature (Ts), 2-m wet bulb temperature (Tw) & temperature 492 

lapse rate (Γ), and 2-m wet bulb temperature (Tw) & temperature lapse rate (Γ) & surface 493 

temperature (Ts), respectively. The sixth approach is from Haynes et al. (2009), which requires 494 

the maximum temperature (Tmax) in the temperature profile greater than 2 °C. 495 

 496 

Method Variables MERRA2 JRA55 ERA5 GFS 

M1 T2m 89 95 96 96 

M2 Tw 88 94 96 96 

M3 Tw, Ts 88 95 97 96 

M4 Tw, Γ 88 96 97 97 

M5 Tw, Γ, Ts 88 97 97 97 

M6 Tmax 92 91 93 92 

 497 

  498 
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 499 

 500 

 501 

Figure 1.  The snowfall success percentage from four precipitation remote sensing datasets, 502 

including CloudSat Cloud Profiling Radar (CPR), GPM Dual Frequency Precipitation Radar 503 

(DPR), GPM GMI precipitation retrieval results from the Goddard Profiling Algorithm (GPROF) 504 

algorithm, and the Multi-Radar Multi-Sensor (MRMS). The denominator on each bar is the 505 

snowfall number from the ground weather report, while the numerator is the number from each 506 

remote sensing dataset. DPR M1 and DPR M2 represent two methods used in DPR for the 507 

precipitation phase discrimination. GPROF M1 and DPR M2 represent two methods used in 508 

GPROF retrieval for the precipitation phase discrimination (see corresponding text for more 509 

details). MRMS data are only available over the Continental United States (CONUS).  510 



26  

 511 

 512 

Figure 2.  (a) Temperature profiles below 1600 meters from four reanalysis datasets, including 513 

MERRA2, GFS, ERA5, and JRA55. (b) The histograms of the 2-m air temperature differences 514 

between surface observations and each reanalysis dataset. All data are from January 2016 to 515 

December 2016.  516 


